Active Temperature Compensation and Calibration for MEMS Pressure Sensors with Constant Voltage

1. Description

This guide provides a simplified procedure for active temperature compensation by implementing a microcontroller (MCU) and a minimal four point calibration scheme. High accuracy applications will require additional calibration points and more complex compensation techniques. The following procedure is just one of several temperature and calibration techniques.

For additional accuracy, it is highly recommended that the system design include AutoZero during normal system operation. Autozero is a simple algorithm that recalibrates the system zero pressure point upon start-up. This simple technique will significantly improve system level accuracy.

The MEMS Pressure Sensor is basically a Wheatstone bridge with output signals in the mV range and requires amplification to interface with the microcontroller analog-to-digital converter (ADC) as shown in the system diagram below:
2. Definition of Terms

\(T_{\text{amb}} \) = Ambient Temperature (Typically 25°C)

\(T_{\text{max}} \) = High Temperature Point (Typically, 75% to 100% of the Maximum operating temperature of application) (°C)

\(P_0 \) = Ambient Pressure (psi)

\(P_1 \) = First Pressure Calibration Point (psi)

\(P_{\text{fullscale}} \) = Fullscale Pressure of sensor (psi)

\(V_{\text{out}} (T,P) \) = Output Voltage (mV)

\(V_{\text{out}}(T_{\text{amb}},P_0) \) = \(V_{\text{out}} \) at Ambient Temperature and Pressure \(P_0 \) (mV)

\(V_{\text{out}}(T_{\text{amb}},P_1) \) = \(V_{\text{out}} \) at Ambient Temperature and Pressure \(P_1 \) (mV)

\(V_{\text{out}}(T_{\text{max}},P_0) \) = \(V_{\text{out}} \) at Maximum Temperature and Ambient Pressure \(P_0 \) (mV)

\(V_{\text{out}}(T_{\text{max}},P_1) \) = \(V_{\text{out}} \) at Maximum Temperature and Pressure \(P_1 \) (mV)

\(V_{\text{zero}}(T) \) = Zero Offset Voltage (mV)

\(\Delta T \) = \(T_{\text{max}} \) – \(T_{\text{amb}} \) (°C)

\(\Delta P \) = \(P_1 \) – \(P_0 \) (psi)

\(S(T) \) = Sensitivity (mV/psi)

\(S(T_{\text{amb}}) \) = Sensitivity at Ambient Temperature (mV/psi)

\(S(T_{\text{max}}) \) = Sensitivity at Maximum Temperature (mV/psi)

\(\text{TCS} \) = Temperature Coefficient of Span (%FS/°C)

\(\text{TCZ} \) = Temperature Coefficient of Zero Offset (%FS/°C)

Alternative temperature and pressure units can be used if kept consistent throughout equations.
Basic Sensor Output Equation:

\[V_{out} (T,P) = V_{zero}(T) + S(T) \cdot P \]
\[= V_{zero}(T_{amb}) + T_{CZ} \cdot S(T_{amb}) \cdot P_{fullscale} \cdot (T - T_{amb}) + \]
\[S(T_{amb}) \cdot (1 + T_{CS} \cdot (T - T_{amb})) \cdot P \]
(1)

Test Equipment Requirements:

Please be aware of the following considerations when choosing suitable test equipment for calibration:

- Temperature dwell times will depend on system design and oven capacity.
- Determine appropriate dwell time by ensuring output voltage stabilizes at temperature.
3. Temperature Compensation Procedure:

Step 1: At Ambient Temperature and Pressure, record data:
- Ambient temperature, \(T_{\text{amb}} \)
- Ambient pressure, \(P_0 \)
- Output Voltage, \(V_{\text{out}}(T_{\text{amb}},P_0) \) (This measurement is repeated with AutoZero technique)

Step 2: Keep at Ambient Temperature and Raise Pressure to \(P_1 \), record data:
- \(P_1 \) of Pressure Source
- Output Voltage, \(V_{\text{out}}(T_{\text{amb}},P_1) \)

Step 3: Raise temperature to Maximum and adjust back to Ambient Pressure, record data:
- Maximum Temperature, \(T_{\text{max}} \)
- Output Voltage, \(V_{\text{out}}(T_{\text{max}},P_0) \)

Step 4: Keep at Maximum Temperature, and raise pressure to \(P_1 \) and record data:
- Output Voltage, \(V_{\text{out}}(T_{\text{max}},P_1) \)

(The four-point calibration procedure has been completed.)

Step 5: Calculate the zero offset and system Sensitivity at Ambient and Maximum Temperature:

\[
\Delta P = P_1 - P_0 \quad (2)
\]
\[
\Delta T = T_{\text{max}} - T_{\text{amb}} \quad (3)
\]
\[
S(T_{\text{amb}}) = \frac{V_{\text{out}}(T_{\text{amb}},P_1)-V_{\text{out}}(T_{\text{amb}},P_0)}{\Delta P} \quad (4)
\]
\[
S(T_{\text{max}}) = \frac{V_{\text{out}}(T_{\text{max}},P_1)-V_{\text{out}}(T_{\text{max}},P_0)}{\Delta P} \quad (5)
\]

For absolute sensors:

\[
V_{\text{zero}}(T_{\text{amb}}) = V_{\text{out}}(T_{\text{amb}},P_0) - S(T_{\text{amb}}) \times P_0 \quad (6)
\]
\[
V_{\text{zero}}(T_{\text{max}}) = V_{\text{out}}(T_{\text{max}},P_0) - S(T_{\text{max}}) \times P_0 \quad (7)
\]
For differential and gauge sensors:

\[V_{\text{zero}}(T_{\text{amb}}) = V_{\text{out}}(T_{\text{amb}}, P_0) \]
\[(8) \]

\[V_{\text{zero}}(T_{\text{max}}) = V_{\text{out}}(T_{\text{max}}, P_0) \]
\[(9) \]

Step 6: Calculate Temperature Coefficient of Span TCS (= sensitivity change over temperature).

\[TCS = \frac{S(T_{\text{max}}) - S(T_{\text{amb}})}{S(T_{\text{amb}}) \Delta T} \]
\[(10) \]

Step 7: Calculate Temperature Coefficient of Zero Offset TCZ (= Offset Voltage change over temperature).

\[TCZ = \frac{V_{\text{zero}}(T_{\text{max}}) - V_{\text{zero}}(T_{\text{amb}})}{S(T_{\text{amb}}) P_{\text{full-scale}} \Delta T} \]
\[(11) \]

Step 8: Implement Data into Basic Sensor Output Equation into MCU with following:

\[P = \frac{\left(V_{\text{out}}(T,P) - (V_{\text{zero}}(T_{\text{amb}}) + TCZ \cdot S(T_{\text{amb}}) \cdot P_{\text{full-scale}} \cdot (T - T_{\text{amb}})) \right)}{S(T_{\text{amb}}) \cdot (1 + TCS \cdot (T - T_{\text{amb}}))} \]
\[(12) \]

Note equation (12) is equation (1) solving for Pressure instead of \(V_{\text{out}} \).

Step 9: AutoZero technique is recommended during normal system operation.

For additional questions, please consult sales@si-micro.com.
4. Warranty and Disclaimer

Information in this document is provided solely to enable software and system implementers to use Silicon Microstructures, Inc. (SMI) products and/or services. No express or implied copyright licenses are granted hereunder to design or fabricate any silicon-based microstructures based on the information in this document.

SMI makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does SMI assume any liability arising out of the application or use of any product or silicon-based microstructure, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in SMI’s datasheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. SMI does not convey any license under its patent rights nor the rights of others. SMI makes no representation that the circuits are free of patent infringement. SMI products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SMI product could create a situation where personal injury or death may occur. Should Buyer purchase or use SMI products for any such unintended or unauthorized application, Buyer shall indemnify and hold SMI and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SMI was negligent regarding the design or manufacture of the products.

SMI warrants goods of its manufacture as being free of defective materials and faulty workmanship. SMI standard product warranty applies unless agreed to otherwise by SMI in writing. Please refer to your order acknowledgement or contact SMI directly for specific warranty details. If warranted goods are returned to SMI during the period of coverage, SMI will repair or replace, at its option, without charge those items it finds defective. The foregoing is buyer’s sole remedy and is in lieu of all warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall SMI be liable for consequential, special, or indirect damages.

While SMI may provide application assistance to aid its customers' design process, it is up to each customer to determine the suitability of the product for its specific application. The information supplied by SMI is believed to be accurate and reliable as of this printing. However, SMI assumes no responsibility for its use. SMI assumes no responsibility for any inaccuracies and/or errors in this publication and reserves the right to make changes to any products or specifications herein without further notice.

Silicon Microstructures, Inc. TM and the Silicon Microstructures, Inc. logo are trademarks of Silicon Microstructures, Inc. All other service or product names are the property of their respective owners.

© Silicon Microstructures, Inc. 2001-2017. All rights reserved.